Data Analysis Example

• Let’s do a simple example analysis together:
 • Start with all data your experiment has collected
 • Select events that have exactly two good energetic muons (momentum in the transverse plane $p_T > 20$ GeV/c)
 • Calculate the following quantity using measured momenta p_1 and p_2 of the two muons:
 $$m_{\mu\mu} = (p_1 + p_2)^2 - (\vec{p}_1 - \vec{p}_1)^2$$
 • Require $m_{\mu\mu} > 70$ GeV and make a plot of this quantity

• Simple? Yea, but we just discovered the Z boson
 – Too bad we are 40 years late, otherwise we would be in line for the Nobel prize
Measurements

• Let’s come back to our Z boson “discovery”
• Once you discover it, you will want to find these:
 • Mass m_0 of the new particle, production rate S, and width Γ of the new particle
 • Lifetime $\tau \sim 1/\Gamma$
• How? Fit a function to the data to measure parameters
 • A simple function would do okay here:
 • $f(m_0, \sigma, S, B) = \frac{S}{\sigma \sqrt{2\pi}} e^{-(m-m_0)^2/2\sigma^2} + \frac{B}{m^2}$
 • Second term is added to describe backgrounds
• Method of least squares: obtain parameters by finding the minimum in 4-dimensional space (m_0, σ, S, B) of the following
 $$\chi^2 = \sum_{i=1}^{N_{\text{bin}}} \frac{(N_i - f(m))^2}{\delta_i^2}$$
 $\delta_i = \sqrt{N_i}$ (assume poisson error in each bin assumed)
• Caveat: MLS does not work well if in some bins N_i is small or zero
Probability and Statistics

• Important when looking for small signals when you have little opportunity to quickly increase your statistics
 • Unimportant when you do something that has large statistics
 • Unimportant when you do something that you can easily reproducible

• In the world of small numbers, everything boils down to probability of this versus that
 • A question of “Do I see signal or do I see background?” requires some sort of probabilistic qualification to be a well defined question
Probability

• Fairly intuitive term referring to “inexact” processes

• Poisson process example:
 • When something happens with a certain rate (frequency over time), how many of these occurrences will you get over an hour?
 • Slight simplification but close: you toss a coin every second and count how many times will get tails over an hour
 • If you repeat this experiment 1,000,000 times and plot the outcomes (the number of heads in each experiment) on the graph and then normalize.
 • You will get the Poisson distribution of getting N outcomes out of 1,000 when the expected rate is 500 (given that the probability is $p=0.5$, right?)
Poisson Probability

• Poisson process example:
 • Can figure this out by doing probability calculations explicitly: every outcome is independent and has a probability of 50% and you consider all possible outcomes, sum them up get the probability density function

\[P(n, \lambda) = \frac{\lambda^n e^{-\lambda}}{n!} \]

• Note it starts looking more and more gaussian with more and more trials
Using Probability Distributions

• What can you do with this P?

- $P(n, \lambda) = \frac{\lambda^n e^{-\lambda}}{n!}$

• E.g. you can calculate the probability to “observe” 100 radioactive decays over an hour when you expect 10

• Or you can calculate the mean expected value (if you were to do this experiment million times and average out):
 - Integrate n from zero to infinity with weight P
 - In this example probability is discrete, so you sum things up instead. The result is $<n>=\lambda$
 - Can also calculate second moment $\Sigma(n-\lambda)^2*P(n)$, which is the variance. The result is $\sigma^2=\lambda$
Probability in Statistics

• The usual “frequentist” definition of probability is:
 • If you had to repeat the same experiment many times, in the limit of infinite number of trials, what would be the frequency of something happening
 • This frequency is your probability
 • Assumes no prior knowledge or beliefs, just statistics in action

• One can also incorporate subjective belief
 • Could be prior knowledge like previous measurements of the same quantity or physical bounds (like a cross-section can’t be less than zero)
 • This is characteristic of Bayesian statistics
 • These are best discussed in examples
Other Statistical Distributions

• Gaussian or normal:
 \[s(m) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(m - m_0)^2}{2\sigma^2}\right) \]

 • The mean is \(m_0 \), variance is \(\sigma^2 \)

• The central limit theorem:
 • For \(x_i \) following any distribution with finite mean and variance, \(y = \Sigma x_i \) follows gaussian distribution in the limit of large \(n \)
 • The sum of a large number of fluctuations \(x_i \) will be distributed as gaussian even if \(x_i \) themselves are not gaussian
Binomial

• When something has two outcomes (like a coin toss) and the probability of a specific outcome is p (correspondingly the probability of the “other” outcome is $1-p$ in each trial)
 - The probability to observe r successful outcomes out of N trials given true probability of p:
 \[
 f(k; n, p) = \Pr(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}
 \]
 - Where:
 \[
 \binom{n}{k} = \frac{n!}{k!(n-k)!}
 \]
Probability Density Function

• Consider Poisson distribution:
 • Can read it two ways:
 • The probability to observe particular values \(n \) for a fixed \(\lambda \)
 \[
P(n, \lambda) = \frac{\lambda^n e^{-\lambda}}{n!}
 \]
 • Or probability of particular values of \(\lambda \), given that the number of observed events is \(n \)
 • If you integrate Poisson distribution over all possible lambdas you will get 1 for any fixed \(n \), just as if you sum it up over all possible \(n \) for a fixed lambda
 • If this is allowable, you have a joint probability density function (p.d.f.), which you can view either as a function of the data \((n) \) or the parameters \((\lambda) \)
Measurements and Statistics

- A typical example is a fit, in which you want to measure some unknown parameters of the “theory”
 - However, when you start thinking of it, there is a lot of conditionality in that, e.g. you assume that at least the parameterization of the “theory” is true – how do you know it to be the case?
 - Therefore, it may well be insufficient to do a simple fit, you often may need to answer many other questions
- Asking proper questions in statistics is very important as the answer and whether it is meaningful depend on the question
 - Will get back to it later
Estimators

• A typical fit problem: we have a set of N measured quantities $x = (x_1, \ldots, x_N)$ described by a joint p.d.f. $f(x; \mu)$, where $\mu = (\mu_1, \ldots, \mu_n)$ is set of n parameters whose values are unknown.

• Any measurement is an attempt to estimate true parameters of the “theory” using observed data.
 • But you are only estimating and your estimates may have biases, so people usually talk about “estimators”.
 • There are various ways to build estimators, most (if not all usually used) estimators converge to the true value of the parameters.
 • But not all can be equal (the “efficiency”, which is how fast your estimator converges to the true value with more data, can matter).

• Various fitting techniques are effectively different ways of picking the estimators.
Common Estimators

• For a set of data x_i following the same pdf with a common mean, the estimators:
 • The mean:
 $$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i$$
 • The variance:
 $$\hat{\sigma}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$
 • Variance of the estimator of the mean: σ^2 / N
 • Variance of the estimator of the variance is more complex (relies on higher moments of the true distribution):
 $$V[\hat{\sigma}^2] = \frac{1}{N} \left(m_4 - \frac{N-3}{N-1} \sigma^4 \right)$$
Maximum Likelihood

- Likelihood for N measurements x_i:
 - It is essentially a joint p.d.f. seen as a function of the parameters θ
 $$L(\theta) = \prod_{i=1}^{N} f(x_i; \theta)$$
 - While x_i could be any measurements, it’s easy to visualize it as a histogram of x with N bins; in each bin you calculate how probable it is to see x_i for a particular θ (or set of θ’s)
 - In ML, the estimators are those values of θ that maximize the likelihood function
 - One could use MINUIT to find the position of minimum for $-\log(L)$
TO BE CONTINUED