Methods of Experimental Particle Physics

Alexei Safonov

Lecture #17
Today Lecture

• Particle Identification Summary

• Presentations:
 • D0 calorimeter by Jeff – delayed till next time
Important “Particles”

• Look at all known particles and consider their decay products
• There are not many options for what you can see in your detector:
 • Quarks and gluons fragment forming jets
 • One exception is top quark - it decays before fragmenting (mainly into a b-quark and a W-boson)
 • All jets look alike except b- and to some extent c-quarks as those can have a non-negligible life-time
 • Getting b’s is important for Higgs, top and many other studies - “tagging”
 • Also special cases, e.g. reconstruction of new hadronic bound states (excited mesons, baryons etc.) – here you often look inside jets and try to reconstruct individual particles
 • Photons:
 • Come from Higgs, from π^0’s, radiation etc.)
 • Leptons - mainly from W and Z decays
 • Invisible stuff (e.g. neutrinos)
Transverse Momentum and Pseudorapidity

- Full momentum of a reconstructed particle has p_T and p_z components
 - p_z is not very meaningful because collisions are always “boosted”: proton momenta are balanced in z-direction but its not protons that collide, it’s partons, so the systems are not balanced in z

- Pseudorapidity:
 \[
 \eta = -\ln \left[\tan \left(\frac{\theta}{2} \right) \right], \quad \eta = \frac{1}{2} \ln \left(\frac{|p| + p_L}{|p| - p_L} \right),
 \]

- Similar to rapidity:
 \[
 y = \frac{1}{2} \ln \left(\frac{E + p_L}{E - p_L} \right)
 \]

- Particle (or jet) distribution for QCD processes is about constant vs rapidity but not versus θ
Leptons

- Excellent probe of electroweak processes (including Higgs)
 - Come from decays and interactions of gauge bosons and higgs
 - Relatively easy to recognize and reconstruct in many experimental analyses, large background suppression
 - Allows precision measurements important for understanding SM (top, W mass, Z cross section and asymmetry)
 - Many beyond SM new physics can be explored using lepton signatures
- Majority of experimental analyses at LHC heavily rely on leptons
 - Electroweak measurements (W, Z), top, higgs
 - Understanding SUSY, even if discovered in jets and missing energy channel, will require lepton channels
Leptons in Detector

• Reconstruction and ID explore basic properties of lepton interactions with matter as they pass through detector material
Muon Reconstruction 101

- Follow the muon through detector systems:
 - Track in the tracking device (charge)
 - Neutrals won’t (many backgrounds out)
 - Little energy deposit in calorimeter (MIP)
 - Backgrounds (pions) have more deposition
 - Muons reach muon system (unless too soft)
 - Most backgrounds never get there
 - Isolation (not much “stuff” around muon):
 - Not muon property, rather process feature
 - In many interesting processes muons are produced “by themselves”
 - Background “muons” almost always come from jets
- Depending on specific physics analysis, use different weights for each feature
 - A common definition often possible
CMS Muon System

- **Main components:** DT, CSC, RPC

- **Drift Tubes (DT):** barrel region (|\(\eta|\)<1.2)
 - 4 layers per superlayer; 2-3 superlayers per station
 - Precise measurement of position and momentum:
 - Offline: 250 – 100 \(\mu\)m; Online: \(~2\) mm

- **Cathode Strip Chambers (CSC):** endcaps (0.8<|\(\eta|\)<2.4)
 - 6 cathode/wire planes per chamber, 3.5 stations
 - Precise measurement of position and momentum:
 - Offline: 100 \(\mu\)m; Online \(~2\) mm

- **Resistive Parallel Plate Chambers (RPC):** barrel and endcaps
 - 1-2 PC per DT; 1 RPC per CSC
 - Good spatial and time resolution: \(~1\) cm; \(~2\) ns
CMS Muon Reconstruction

- Most straightforward approach: “Global Muon”
 - Reconstruct a track ("stub") in muon system
 - Link to a tracker track
- Works well above 5 GeV
 - Shoulders: barrel/endcap
- Can improve low p_T side:
 - Recover tracker inefficiency
 - “Standalone muon” (stubs)
 - Get muons with fewer muon hits
 - “Tracker muon” (inside-out tracking + “compatibility”)
 - Recover muons that never made it to the muon system:
 - “Calo muons” (MIP-like track)
- Final candidate list combines all of the above
 - Can adjust purity and efficiency for specific analyses
Muon Momentum Reconstruction

- Standalone muon system resolution ~10%
 - Significant material in front of muon system makes it hard to do a lot better
 - Also not necessary as p_T is always better measured by the tracker
- Generally, muon system’s task is to “recognize” muons, but there are exceptions:
 - Standalone muon momentum is used in the trigger at Level-1
 - 10% is good enough for that
 - Momentum reconstruction for very high momentum muons ($p_T>200$ GeV/c)
 - Larger lever arm of muon system helps
Electron Reconstruction 101

- Follow electron through detector systems:
 - Track in the tracking device (charge)
 - Neutrals won’t (many backgrounds out)
 - Most energy deposited in ECAL, very little in HCAL
 - Many backgrounds have more “even” deposition (charged hadrons)
 - Track momentum and energy deposited in ECAL should agree
 - For many backgrounds won’t be true
 - Narrow cluster in ECAL:
 - Backgrounds will be more spread out
 - Isolation (not much “stuff” around electron):
 - Not electron property, process dependent
 - In many interesting processes electrons are produced “by themselves”
 - Background “electrons” almost always come from jets
CMS ECAL Design

Homogenous Lead Tungstate (PbWO$_4$) Crystal Calorimeter + Pb-Si Preshower

Barrel (EB):
- 61200 crystals
- 36 Supermodules (SM), each 1700 crystals
- $|\eta| < 1.48$

Endcap (EE):
- 14648 crystals
- 4 Dees, SuperCrystals of 5x5 crystals
- $1.48 < |\eta| < 3.0$

Preshower (ES):
- Pb-Si
- 4 Dees
- 4300 Si strips
- $1.65 < |\eta| < 2.6$

Crystals are projective and positioned pointing slightly off the IP to avoid cracks.
Electron Reconstruction Challenges

• ECAL has excellent internal resolution
• Challenge is the “heavy” tracker
 • Many electrons will interact (brem) inside tracker (on average radiation is ~70% of energy)
 • Multiple clusters in ECAL
 • Spread in phi due to B-field
 • Standard tracking does not do a good job on “kinked” electrons
• More backgrounds as many photons (from π^0’s in jets) will convert:
 • Photons have >50% probability to convert into e+e- pair
 • Converted electron is a real electron
Electron Reconstruction

• SuperCluster algorithm:
 • Creates clusters (start with the seed) extending in phi (up to 17 crystals) and narrow in eta (5)
 • Designed to collect brem radiation
 • For reference, for a non-converted photon ~97% of energy in 5x5 crystals
 • Energy (position) from (weighted) crystal sum
• Similar approach in Endcap (multi5x5 algorithm)
Electrons: Association with Tracks

- Start with a loose match to tracker (pixel) seeds
- Extrapolate tracks inside-out to next layer
 - Use PDF defined from electron energy loss
- Keep up to three tracks at each step
- Final fit gives:
 - Track parameters in/out, energy loss, chi2
- Optimal final energy from comparison of ECAL and track measurements
Electron ID and Isolation

- Reconstruction should focus on high efficiency
 - Results in ~1 electron candidate per jet event
 - Need knobs to improve purity – ID
- Identification variables:
 - Had/EM, shower width in eta, quality of cluster-track matching
 - Cluster-track energy consistency: E_{SC}/p_{in}, E_{seed}/p_{out} (when tracking understood in data)
- Isolation: similar to muons, large background reduction at relatively small loss to efficiency
 - A specific choice of selections is analysis dependent
Tau Lepton Reconstruction

- Tau is different from other leptons as it decays inside the detector:
 - $c\tau=87\ \mu$m
- Dominated by hadronic decays
 - Leptonic $B(\tau \rightarrow l\nu)\sim 17\%\ l=e,\mu$
 - Hadronic $B\sim 65\%$, main modes
 - $3/4$ with $\pi^\pm+N\pi^0$, $1/4\ 3\pi^\pm+N\pi^0$
- Hadronic tau looks like a generic QCD jet
 - Not good because jets are the main background
Hadronic Tau Reconstruction

• Explores tau/jet differences in fragmentation:
 • Taus: small number of relatively energetic and spatially close particles
 • Jets: more soft particles, spread out

• Uses Particle Flow, main steps:
 • Seed track with $p_T > 5$ GeV
 • Recent: seeding with neutral pions – noticeable improvement in efficiency

 ■ Form a cone of size $\Delta R = 0.15$ around the seed track
 ■ Everything inside the cone - tau constituents, outside (up to $\Delta R = 0.5$) – isolation region
 ■ Or look for combinations of pions and photons consistent with typical tau decay patterns

 ■ Energy is calculated from constituents
Reconstruction and ID: Fighting Jets

• After initial reduction in the number of candidates, some further cleanup:
 • Signal cone redefined:
 • Decrease cone size for energetic taus to reduce backgrounds
 • Correction for conversions:
 • Photon candidates consistent with being conversion electrons pulled from isolation into signal
 • Energy recalculated
 • Isolation variables defined:
 • Number of tracks (photons) in isolation cone above 1 GeV
 • Gives softer reduction, robust against UE effects and pile-up
 • Sum of transverse momenta for tracks and photons:
 • More aggressive
Photons

• That’s the main driver of significance in seeing Higgs at the LHC

• Very similar to electrons: photon is an electron without a track
 • That’s actually how you find them
 • Depending on the event topology can be isolated, i.e. photons from Higgs are isolated

• Can also reconstruct conversions – find two electrons consistent with having very small invariant mass coming from a common vertex where the photon converted
Heavy Flavor Tagging

- B-jets are special both in terms of physics and how they look:
 - Top quark decays to b and a W – can study tops
 - Higgs decay probability is proportional to the mass of a fermion – 90% of the time Higgs decays to b-jets
 - B-jets have “lifetime”:
 - B-quarks quickly hadronize forming typically mesons
 - B-hadrons are unstable (decay weakly, e.g. a b quark can decay into c and a virtual W), but lifetime is not negligible - potentially detectable
 - Note charm can given another decay vertex

[Diagram showing primary vertex and B flight axis]
Heavy Flavor Tagging

• B lifetime is of the order of ~1.5 ps
 • Then $c\tau \sim 0.5$ mm, for an energetic B-hadron the vertex can be a cm or few away from the collision point
 • This vertex will likely be still inside the beam-pipe, but you can detect such secondary vertex using tracks in the event that do not seem to originate in the IP

• You can guess that to do this well, one needs a good resolution for track trajectory determination near the beam line
 • Sub-mm precision, so we are talking some microns

\[\lambda_B = 468 \pm 7 \text{(stat)} \pm 22 \text{(syst)} \mu m \]
Heavy Flavor Tagging

• Typical algorithms:
 • Reconstruct a secondary vertex well separated from the collision point
 • Identify and count tracks with large “impact parameter” relative to the interaction point
 • E.g. use how much off is the second or third most suspicious track is
 • “Soft lepton tagging”:
 • Virtual W from b->cW or from c->dW can give an electron or muon – look for leptons inside jets
Typical Analysis Flow

- In typical analyses, analyzers are trying to find or select a high purity sample of events of some specific type (say $H \rightarrow ZZ \rightarrow 4\mu$) using
 - “Standard” objects (e.g., muons in this case) as bricks in building a complete analysis
 - Sometimes one will want to modify the standard selections if there is a good reason for it, but generally “standard” selections have high efficiency and reasonable background suppression
 - Analysis-specific topological and kinematical selections:
 - These are done to reduce any remaining backgrounds by recognizing them or by exploring some kinematic variables that allow good discrimination of signal from background (for example the 4 muon mass for Higgs events will look like a narrow peak while for nonHiggs $pp \rightarrow ZZ \rightarrow 4\mu$ background events there will be no resonance-like peak
Next Time(s)

• Triggers at Hadron Collider Experiments
• Monte Carlo based simulations in HEP:
 • Event generators
 • Pythia (main example), Herwig, Madgraph
 • Detector simulation basics
 • GEANT program